Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
J Biomed Inform ; 124: 103937, 2021 12.
Article in English | MEDLINE | ID: mdl-34687867

ABSTRACT

The adoption of health information technology (HIT) has facilitated efforts to increase the quality and efficiency of health care services and decrease health care overhead while simultaneously generating massive amounts of digital information stored in electronic health records (EHRs). However, due to patient safety issues resulting from the use of HIT systems, there is an emerging need to develop and implement hazard detection tools to identify and mitigate risks to patients. This paper presents a new methodological framework to develop hazard detection models and to demonstrate its capability by using the US Department of Veterans Affairs' (VA) Corporate Data Warehouse, the data repository for the VA's EHR. The overall purpose of the framework is to provide structure for research and communication about research results. One objective is to decrease the communication barriers between interdisciplinary research stakeholders and to provide structure for detecting hazards and risks to patient safety introduced by HIT systems through errors in the collection, transmission, use, and processing of data in the EHR, as well as potential programming or configuration errors in these HIT systems. A nine-stage framework was created, which comprises programs about feature extraction, detector development, and detector optimization, as well as a support environment for evaluating detector models. The framework forms the foundation for developing hazard detection tools and the foundation for adapting methods to particular HIT systems.


Subject(s)
Health Information Systems , Medical Informatics , Delivery of Health Care , Electronic Health Records , Humans , Patient Safety , United States , United States Department of Veterans Affairs
2.
Health Syst (Basingstoke) ; 8(3): 190-202, 2019.
Article in English | MEDLINE | ID: mdl-31839931

ABSTRACT

An increase in the reliability of Health Information Technology (HIT) will facilitate institutional trust and credibility of the systems. In this paper, we present an end-to-end framework for improving the reliability and performance of HIT systems. Specifically, we describe the system model, present some of the methods that drive the model, and discuss an initial implementation of two of the proposed methods using data from the Veterans Affairs HIT and Corporate Data Warehouse systems. The contributions of this paper, thus, include (1) the design of a system model for monitoring and detecting hazards in HIT systems, (2) a data-driven approach for analysing the health care data warehouse, (3) analytical methods for characterising and analysing failures in HIT systems, and (4) a tool architecture for generating and reporting hazards in HIT systems. Our goal is to work towards an automated system that will help identify opportunities for improvements in HIT systems.

3.
Anim Health Res Rev ; 18(1): 1-25, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28506325

ABSTRACT

Antimicrobial use (AMU) is increasingly threatened by antimicrobial resistance (AMR). The FDA is implementing risk mitigation measures promoting prudent AMU in food animals. Their evaluation is crucial: the AMU/AMR relationship is complex; a suitable framework to analyze interventions is unavailable. Systems science analysis, depicting variables and their associations, would help integrate mathematics/epidemiology to evaluate the relationship. This would identify informative data and models to evaluate interventions. This National Institute for Mathematical and Biological Synthesis AMR Working Group's report proposes a system framework to address the methodological gap linking livestock AMU and AMR in foodborne bacteria. It could evaluate how AMU (and interventions) impact AMR. We will evaluate pharmacokinetic/dynamic modeling techniques for projecting AMR selection pressure on enteric bacteria. We study two methods to model phenotypic AMR changes in bacteria in the food supply and evolutionary genotypic analyses determining molecular changes in phenotypic AMR. Systems science analysis integrates the methods, showing how resistance in the food supply is explained by AMU and concurrent factors influencing the whole system. This process is updated with data and techniques to improve prediction and inform improvements for AMU/AMR surveillance. Our proposed framework reflects both the AMR system's complexity, and desire for simple, reliable conclusions.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Drug Resistance, Bacterial , Animals , Drug Utilization/legislation & jurisprudence , United States , United States Food and Drug Administration
4.
PLoS One ; 11(4): e0153769, 2016.
Article in English | MEDLINE | ID: mdl-27096162

ABSTRACT

Although adoption of newer Point-of-Care (POC) diagnostics is increasing, there is a significant challenge using POC diagnostics data to improve epidemiological models. In this work, we propose a method to process zip-code level POC datasets and apply these processed data to calibrate an epidemiological model. We specifically develop a calibration algorithm using simulated annealing and calibrate a parsimonious equation-based model of modified Susceptible-Infected-Recovered (SIR) dynamics. The results show that parsimonious models are remarkably effective in predicting the dynamics observed in the number of infected patients and our calibration algorithm is sufficiently capable of predicting peak loads observed in POC diagnostics data while staying within reasonable and empirical parameter ranges reported in the literature. Additionally, we explore the future use of the calibrated values by testing the correlation between peak load and population density from Census data. Our results show that linearity assumptions for the relationships among various factors can be misleading, therefore further data sources and analysis are needed to identify relationships between additional parameters and existing calibrated ones. Calibration approaches such as ours can determine the values of newly added parameters along with existing ones and enable policy-makers to make better multi-scale decisions.


Subject(s)
Influenza, Human/diagnosis , Influenza, Human/epidemiology , Models, Statistical , Point-of-Care Systems/statistics & numerical data , Algorithms , Calibration , Humans
5.
PLoS One ; 11(1): e0146600, 2016.
Article in English | MEDLINE | ID: mdl-26820405

ABSTRACT

Epidemiological modeling for infectious disease is important for disease management and its routine implementation needs to be facilitated through better description of models in an operational context. A standardized model characterization process that allows selection or making manual comparisons of available models and their results is currently lacking. A key need is a universal framework to facilitate model description and understanding of its features. Los Alamos National Laboratory (LANL) has developed a comprehensive framework that can be used to characterize an infectious disease model in an operational context. The framework was developed through a consensus among a panel of subject matter experts. In this paper, we describe the framework, its application to model characterization, and the development of the Biosurveillance Analytics Resource Directory (BARD; http://brd.bsvgateway.org/brd/), to facilitate the rapid selection of operational models for specific infectious/communicable diseases. We offer this framework and associated database to stakeholders of the infectious disease modeling field as a tool for standardizing model description and facilitating the use of epidemiological models.


Subject(s)
Communicable Diseases/epidemiology , Epidemiological Monitoring , Animals , Communicable Disease Control , Humans , Models, Statistical
6.
BMC Bioinformatics ; 16 Suppl 17: S4, 2015.
Article in English | MEDLINE | ID: mdl-26679008

ABSTRACT

BACKGROUND: The digitization of health-related information through electronic health records (EHR) and electronic healthcare reimbursement claims and the continued growth of self-reported health information through social media provides both tremendous opportunities and challenges in developing effective biosurveillance tools. With novel emerging infectious diseases being reported across different parts of the world, there is a need to build systems that can track, monitor and report such events in a timely manner. Further, it is also important to identify susceptible geographic regions and populations where emerging diseases may have a significant impact. METHODS: In this paper, we present an overview of Oak Ridge Biosurveillance Toolkit (ORBiT), which we have developed specifically to address data analytic challenges in the realm of public health surveillance. In particular, ORBiT provides an extensible environment to pull together diverse, large-scale datasets and analyze them to identify spatial and temporal patterns for various biosurveillance-related tasks. RESULTS: We demonstrate the utility of ORBiT in automatically extracting a small number of spatial and temporal patterns during the 2009-2010 pandemic H1N1 flu season using claims data. These patterns provide quantitative insights into the dynamics of how the pandemic flu spread across different parts of the country. We discovered that the claims data exhibits multi-scale patterns from which we could identify a small number of states in the United States (US) that act as "bridge regions" contributing to one or more specific influenza spread patterns. Similar to previous studies, the patterns show that the south-eastern regions of the US were widely affected by the H1N1 flu pandemic. Several of these south-eastern states act as bridge regions, which connect the north-east and central US in terms of flu occurrences. CONCLUSIONS: These quantitative insights show how the claims data combined with novel analytical techniques can provide important information to decision makers when an epidemic spreads throughout the country. Taken together ORBiT provides a scalable and extensible platform for public health surveillance.


Subject(s)
Biosurveillance , Public Health , Software , Electronic Health Records , Humans , Incidence , Influenza A Virus, H1N1 Subtype , Influenza, Human/epidemiology , Influenza, Human/transmission , Pandemics , Seasons , Time Factors , United States/epidemiology
7.
Front Public Health ; 3: 182, 2015.
Article in English | MEDLINE | ID: mdl-26284230

ABSTRACT

We describe a data-driven unsupervised machine learning approach to extract geo-temporal co-occurrence patterns of asthma and the flu from large-scale electronic healthcare reimbursement claims (eHRC) datasets. Specifically, we examine the eHRC data from 2009 to 2010 pandemic H1N1 influenza season and analyze whether different geographic regions within the United States (US) showed an increase in co-occurrence patterns of the flu and asthma. Our analyses reveal that the temporal patterns extracted from the eHRC data show a distinct lag time between the peak incidence of the asthma and the flu. While the increased occurrence of asthma contributed to increased flu incidence during the pandemic, this co-occurrence is predominant for female patients. The geo-temporal patterns reveal that the co-occurrence of the flu and asthma are typically concentrated within the south-east US. Further, in agreement with previous studies, large urban areas (such as New York, Miami, and Los Angeles) exhibit co-occurrence patterns that suggest a peak incidence of asthma and flu significantly early in the spring and winter seasons. Together, our data-analytic approach, integrated within the Oak Ridge Bio-surveillance Toolkit platform, demonstrates how eHRC data can provide novel insights into co-occurring disease patterns.

8.
PLoS One ; 9(3): e91989, 2014.
Article in English | MEDLINE | ID: mdl-24647562

ABSTRACT

The objective of this manuscript is to present a systematic review of biosurveillance models that operate on select agents and can forecast the occurrence of a disease event. We define a disease event to be a biological event with focus on the One Health paradigm. These events are characterized by evidence of infection and or disease condition. We reviewed models that attempted to predict a disease event, not merely its transmission dynamics and we considered models involving pathogens of concern as determined by the US National Select Agent Registry (as of June 2011). We searched commercial and government databases and harvested Google search results for eligible models, using terms and phrases provided by public health analysts relating to biosurveillance, remote sensing, risk assessments, spatial epidemiology, and ecological niche modeling. After removal of duplications and extraneous material, a core collection of 6,524 items was established, and these publications along with their abstracts are presented in a semantic wiki at http://BioCat.pnnl.gov. As a result, we systematically reviewed 44 papers, and the results are presented in this analysis. We identified 44 models, classified as one or more of the following: event prediction (4), spatial (26), ecological niche (28), diagnostic or clinical (6), spread or response (9), and reviews (3). The model parameters (e.g., etiology, climatic, spatial, cultural) and data sources (e.g., remote sensing, non-governmental organizations, expert opinion, epidemiological) were recorded and reviewed. A component of this review is the identification of verification and validation (V&V) methods applied to each model, if any V&V method was reported. All models were classified as either having undergone Some Verification or Validation method, or No Verification or Validation. We close by outlining an initial set of operational readiness level guidelines for disease prediction models based upon established Technology Readiness Level definitions.


Subject(s)
Biosurveillance , Decision Support Techniques , Disease , Forecasting , Models, Biological , Disaster Planning , Humans , Reproducibility of Results , Statistics as Topic
SELECTION OF CITATIONS
SEARCH DETAIL
...